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Abstract. The retrieval of trace gas, cloud and aerosol measurements from ultraviolet, visible and near-infrared (UVN) 

sensors requires precise information on the surface properties that are traditionally obtained from Lambertian equivalent 10 

reflectivity (LER) climatologies. The main drawbacks of using such LER climatologies for new satellite missions are (a) 

climatologies are typically based on previous missions with a significant lower spatial resolution, (b) they usually do not 

fully take into account the satellite viewing dependencies characterized by the bidirectional reflectance distribution function 

(BRDF) effects, and (c) climatologies may differ considerably from the actual surface conditions especially under snow/ice 

situations. 15 

In this paper we present a novel algorithm for the retrieval of geometry-dependent effective Lambertian equivalent 

reflectivity (GE_LER) from UVN sensors based on the full-physics inverse learning machine (FP_ILM) retrieval. The 

radiances are simulated using a radiative transfer model that takes into account the satellite viewing geometry and the inverse 

problem is solved using machine learning techniques to obtain the GE_LER from satellite measurements. 

The GE_LER retrieval is optimized for the trace gas retrievals using the DOAS algorithm and the large amount of data of the 20 

new atmospheric Sentinel satellite missions. The GE_LER can either be used directly for the computation of AMFs using the 

effective scene approximation or a global gapless geometry-dependent LER (G3_LER) daily map can be easily created from 

the GE_LER under clear-sky conditions for the computation of AMFs using the independent pixel approximation. 

The FP_ILM GE_LER algorithm is applied to measurements of TROPOMI launched in October 2017 on board the EU/ESA 

Sentinel-5 Precursor (S5P) mission. The TROPOMI GE_LER/G3_LER results are compared with climatological OMI LER 25 

data and the advantages of using GE_LER/G3_LER are demonstrated for the retrieval of total ozone from TROPOMI. 

1. Introduction 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-37
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 17 April 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

Uncertainties about the surface reflectance and not accounting their anisotropic properties are mayor error sources for the 

retrieval of trace gas, cloud and aerosol information from ultraviolet, visible and near-infrared (UVN) satellites 

measurements (Vasilkov et al., 2018; Lorente et al., 2018; Lin et al., 2014; Seidel et al., 2012; Zhou et al., 2010). For 

example errors of 0.02 in the surface reflectivity may induce errors of 10%–20% in SO2 column (Lee et al., 2009) and 

seasonal snow cover could change the retrieved NO2 column by 20%–50% (O'Byrne et al., 2010) and the retrieved O3 5 

column by 5%–35% (Lerot et al., 2014). 

Traditionally, surface properties are obtained from Lambertian equivalent reflectivity (LER) climatologies and in the case of 

new missions like TROPOMI launched in October 2017 on board the EU/ESA Sentinel-5 Precursor (S5P) mission, the 

climatologies used at the beginning of the mission are based on LER data from previous missions like TOMS (Herman and 

Celarier, 1997), GOME (Koelemeijer et al., 2003), OMI (Kleipool et al., 2008), SCIAMACHY(Tilstra et al., 2017), and 10 

GOME-2 (Pflug et al., 2008). 

The unprecedented spatial resolution of TROPOMI (3.5x7 km
2
) clearly showed the disadvantages of using LER 

climatologies based on previous missions with a significant lower spatial resolution. The initial version of the TROPOMI 

trace gas products using climatologies show flawed patterns related to the coarse resolution of the OMI LER climatology. A 

LER climatology based on TROPOMI measurements could solve this particular problem, but creating such new TROPOMI 15 

LER climatology will probably require at least two years of data. Furthermore, there are two fundamental problems with 

typical LER climatologies: (a) the actual surface conditions of a satellite measurement may differ considerably from 

climatological values like for example under snow/ice situations, and (b) the effect of surface reflectance anisotropy are 

usually not properly covered by the climatology. 

Retrieval of effective scene albedo has been used in total ozone algorithms from nadir and limb satellite sensors. The 20 

WFDOAS (Coldewey-Egbers et al., 2005) approach retrieves the effective LER at 377 nm, the GODFIT (Lerot et al., 2010) 

and SAGE III (Raul and Taha, 2007) approaches retrieve simultaneously with ozone the effective LER and other parameters. 

Another approach used for NO2 and cloud retrievals is the computation of LER from bidirectional reflectance distribution 

function (BRDF) data obtained from other satellite sensors. In a recent work (Vasilkov et al., 2017), the BRDF data from 

MODIS is first resampled to the lower resolution of the OMI and then a geometry-dependent LER is computed using 25 

radiative transfer model simulations. Unfortunately MODIS BRDF data is available only from VIS wavelengths and 

rescaling the VIS BRDF (or LER) to UV is not straightforward. Furthermore, the radiative transfer model assumptions 

needed for computing LER from BRDF may not be fully compatible with the assumptions made in the trace gas retrieval. 

In this paper we present a novel algorithm for the retrieval of geometry-dependent effective Lambertian equivalent 

reflectivity (GE_LER) from UVN measurements and the creation of global gapless geometry-dependent LER (G3_LER) 30 

daily map using GE_LER data under clear-sky conditions. The GE_LER/G3_LER retrieval solves the problems of using 

LER climatologies and accounts for surface anisotropy effects in cloud, aerosol and trace gas retrievals in a similar way as 
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the effective LER (Coldewey-Egbers et al., 2005) and the geometry-dependent LER (Qin et al., 2019). But in contrast to 

these approaches, the GE_LER retrieval is performed in exactly the same fitting windows used for the trace gas, cloud and 

aerosol retrievals; furthermore our algorithm does not require data from other sensors like BRDF (land surfaces) or 

Chlorophyll and wind parameters (water surfaces). 

First we describe in section 2 the full-physics inverse learning machine (FP_ILM) technique used for the retrieval of 5 

GE_LER from UVN measurements and how it is optimized for the DOAS trace gas retrievals. Section 3 describes the 

creation of global gapless geometry-dependent LER (G3_LER) daily map using the retrieved GE_LER under clear-sky 

conditions. In section 4 we apply the GE_LER algorithms to S5P measurements and then we compare the TROPOMI 

G3_LER results with climatological OMI LER data. Finally in Section 5 we demonstrate the advantages of using 

GE_LER/G3_LER for the retrieval of total ozone from TROPOMI and in Section 6 we discuss future work. 10 

2. The FP_ILM algorithm for the GE_LER retrieval 

Trace gas, cloud and aerosol retrievals from UVN measurements rely on complex radiative transfer model (RTM) 

simulations. The RTM are computationally expensive and therefore not well suited for processing the big data from the new 

generation of atmospheric composition Sentinel missions. A classical approach for speeding up the RTM simulations is to 

use look-up tables, but they require significant amount of memory and what is more important the interpolation/extrapolation 15 

errors could be large and time consuming. To solve these issues, the DLR team developed during the last two decades 

machine learning techniques for the optimal generation of RTM samples (Loyola et al., 2016) and the accurate 

parameterizing of RTM simulations using artificial neural networks (NN). These algorithms are being used for the 

operational processing of GOME-2 (Loyola et al., 2010) and now TROPOMI (Loyola et al., 2018) data. 

Machine learning can be used not only for forward problems (like the parameterization of RTM simulations), but also for 20 

solving inverse problems, see for example (Loyola et al., 2016). During the last years we developed an approached called 

full-physics inverse learning machine (FP_ILM) technique that was successfully applied for retrieving profile shapes from 

GOME-2 (Xu et al., 2017) and retrieving SO2 layer height from GOME-2 (Efremenko et al., 2017) and TROPOMI (Hedelt 

et al., 2019). 

Figure 1 shows a flow diagram of the different steps of the FP_ILM algorithm and the following subsections describe in 25 

more detail how FP_ILM is applied for the retrieval of GE_LER. 

2.1. Forward Model 

The forward model has two components: first a radiative transfer model (RTM) that computes the spectral intensity as a 

function of the viewing geometry, atmospheric components and surface properties; and second a sensor model that 

transforms the RTM spectra to simulated spectra using sensor information like the instrument spectral response function and 30 

the instrument signal to noise ratio. 
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The forward model F can be used to compute simulated spectra radiances 𝑅𝑠𝑖𝑚 for a given wavelength 𝜆 as 

 𝑅𝑠𝑖𝑚(𝜆) ± 𝑅 = 𝐹(𝜆, Θ, Ω, 𝐴𝑒 , 𝑍𝑒)  (1) 

where 𝑅 denotes the expected instrument error, Θ is the light path geometry (solar and satellite zenith and azimuth angles), 

Ω  are the atmospheric composition components, and the surface properties 𝐴𝑒  for the geometry-dependent effective 

Lambertian equivalent reflectivity (GE_LER) and 𝑍𝑒 for the effective surface pressure. 5 

2.2. Smart Sampling 

A key element of FP_ILM is creating a training data set that extensively covers the multidimensional space of the forward 

problem and at the same time minimizes the computational expensive calls to the radiative transfer model. We use the smart 

sampling techniques (Loyola et al., 2016) for creating a dataset of samples {Θ, Ω, 𝐴𝑒 , 𝑍𝑒} that fully represent the expected 

viewing and geophysical conditions of the problem at hand. 10 

As shown in Figure 1, the smart sampling and forward module calls are iterated in a loop until the multi-dimensional integral 

of the output samples dataset {𝑅𝑠𝑖𝑚(𝜆) ± 𝑅} converge; see (Loyola et al., 2016) for more details. 

2.3. Feature Extraction 

Retrieval of trace gas, cloud and aerosol concentrations from UVN sensors requires spectrometers with sufficient spectral 

resolution to resolve features in the electromagnetic spectrum; therefore the fitting-window used for the retrieval of a trace 15 

gas usually contains radiances at a high-dimensional space (tens to hundreds of wavelengths). Machine learning techniques 

perform best with low-dimensional datasets by avoiding the effects of the curse of dimensionality. 

Feature extraction is a mapping function that transforms a dataset from a high- to a low-dimensional space removing 

redundant information and noise. In previous FP_ILM applications (Loyola et al., 2006; Xu et al., 2017) we used principal 

component analysis for the feature extraction, however for the GE_LER retrieval we take advantage of the DOAS fitting 20 

results  

 𝑅𝑠𝑖𝑚(𝜆) = − ∑ 𝑁𝑠,𝑔(Θ) ∙ 𝜎𝑔(𝜆)𝑔 − 𝑃(𝜆)  (2) 

with 𝑁𝑠,𝑔(Θ)  the effective slant column density of gas g for the light path geometry Θ, 𝜎𝑔(𝜆) the associated trace gas 

absorption cross-section for wavelength 𝜆, and 𝑃(𝜆) the external closure polynomial.  

The feature extraction step consists in applying the DOAS fit to the simulated radiances. Combining (1) and (2) for a given 25 

fitting window  we obtain the following approximation with simulated datasets that representing the forward problem  

 {𝑁𝑠,𝑔(Θ), 𝑃()} ≅ {𝐹(Θ, 𝐴𝑒(), 𝑍𝑒)}  (3) 

2.4. Machine Learning 
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Machine learning approximates a function represented by input/output datasets using either linear or non-linear regression 

algorithms. In this paper we use artificial neural networks (NN) to learn the non-linear inverse problem by reorganizing the 

datasets from (3) to represent the inverse problem  

 {𝐴𝑒()} ≅ {𝐹𝑁𝑁
−1(𝑃(), 𝑁𝑠,𝑔, Θ, 𝑍𝑒)}  (4) 

In other words, a neural network solves the inverse problem and retrieves the GE_LER as function of the DOAS closure 5 

polynomial, the DOAS fitted effective slant column density, the viewing geometry and the effective surface pressure. The 

inverse operator are the weights and biases of the neural network approximating 𝐹𝑁𝑁
−1. 

2.5. GE_LER Retrieval 

Obtaining the inverse operator is very time consuming mainly due to the relative large amount of RTM simulations needed 

to properly represent the forward problem. Finding a NN topology that learns the inverse function with a small error is also 10 

computational intensive. But all these steps are done offline and only once for a given sensor and trace gas fitting window. 

Figure 2 shows the flow diagram for applying the FP_ILM to satellite measurements. There is no extra computational 

needed for the feature extraction part as we are using the results from the DOAS fitting and the application of the NN to 

retrieved GE_LER is extremely fast as it only involves simple matrix multiplications. 

The extremely fast retrieval using the FP_ILM is a crucial advantage for the operational near-real-time processing of the Big 15 

Data from the current and future atmospheric composition Sentinel missions. 

3. Global Gapless Geometry-dependent (G3) LER Daily Map 

The conversion of the DOAS effective slant column to a geometry independent total column requires the calculation of air 

mas factors (AMF) using either the effective scene approximation (Coldewey-Egbers et al., 2005) or the independent pixel 

approximation (e.g. Loyola et al., 2011). The GE_LER can be used directly for the computation of AMFs using the effective 20 

scene approximation, whereas a LER is needed for the computation of AMFs using the independent pixel approximation. 

A global gapless geometry-dependent LER (G3_LER) daily map can be easily created from GE_LER retrieved under clear-

sky conditions. The G3_LER map for a given day is created by merging the clear-sky LER data from the same day with the 

G3_LER map based on the LER data from previous days, see Figure 3. 

It is important to note that the GE_LER takes into account the bidirectional reflectance distribution function (BRDF) effects 25 

as it is based on radiative transfer model simulations using the actual viewing geometry. But when combining GE_LER data 

their BRDF dependencies (, 𝜃, ) as function of the wavelength in the fitting window , the viewing zenith angle 𝜃, and 

the surface types  must be considered. The function can be easily obtained separately for different fitting windows  (in the 
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UV, VIS and NIR spectral region), different surface types  (land, water, snow/ice) and time periods (e.g. monthly) by 

fitting a polynomial of clear-sky LERs averaged as function of 𝜃.  

The G3_LER daily map contains normalized LER, i.e. GE_LER retrieved under clear-sky conditions divided by the fitted 

BRDF dependency, as well as the multiplicative factors (𝜃) to compute the geometry-dependent LER as a function of the 

actual satellite viewing zenith angle 𝜃. 5 

It is necessary to aggregate normalized LER retrievals over several days (between one to four weeks depending on 

cloudiness) in order to obtain a global gapless map. In contrast to LER climatologies, the G3_LER map represents the actual 

surface properties as it is updated on a daily basis. 

4. GE_LER and G3_LER from TROPOMI/S5P 325-335 nm 

The GE_LER and G3_LER algorithms described in the previous sections are applied to measurements of TROPOMI/S5P in 10 

the total ozone wavelength region. The S5P operational near-real-time total ozone products (Loyola et al., 2019) are based 

on the DOAS algorithm using the fitting window of 325-335 nm. 

4.1. FP_ILM GE_LER Training 

The training dataset is based on spectra simulated by the Vector LInearized Discrete Ordinate Radiative Transfer 

(VLIDORT) model (Spurr, 2016). The RTM inputs are ozone concentration profiles, surface albedo, surface pressure and the 15 

viewing geometry solar and viewing angles. The smart-sampling technique (Loyola et al., 2016) was used to create more 

than 2 × 105 synthetic UV spectra using ozone profile, viewing geometry and surface parameters in the range listed in Table 

1. We use the Bodeker et al., (2013) ozone database merged with the McPeters/Labow (Labow et al., 2015) ozone 

climatology for an optimal representation of the ozone vertical distribution in the stratosphere and troposphere.  

TROPOMI/S5P-like measurements are created by applying the instrument slit function to the RTM simulated radiances and 20 

adding a Gaussian instrument noise with a signal-to-noise ratio of 300 representative of TROPOMI band 3, see Kleipool et 

al., 2018. 

The DOAS fitting is applied to the simulated S5P radiances using a cubic polynomial resulting in a dataset of ozone slant 

columns and the polynomial coefficients. Figure 4 shows the optical densities difference for three scenarios: (a) with respect 

to four typical values of surface albedo of 0.05, 0.3, 0.6, and 0.9 correspond to water, land, melted snow/ice-covered and 25 

fresh snow/ice-covered regions. The largest absolute value of the optical density corresponds to the largest surface albedo; 

the optical densities for four albedos do not differ significantly at the lower wavelength, while the differences increase at the 

higher wavelength. (b) with respect to three total ozone columns of 150 DU, 300 DU, and 500 DU; the optical density 

increases gradually along the selected wavelength region, the absolute value of the optical density increases when the total 

ozone column increases. And (c) with respect to three viewing zenith angles of 50°, 30°, 10°; the absolute value of the 30 
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optical density increases when the viewing zenith angle decreases. For all cases, the optical density increases along the 

wavelength region. 

The input and output of the simulations is reorganized according to (3) and a neural network is trained to learn the inverse 

function using 70% of the simulations for training, 15% for testing and 15% for validation. The best results are obtained 

using a NN with a topology of 9-20-8-2-1, which is 9 neurons in the input layer, three hidden layers with the given number 5 

of neurons, and one neuron on the output layer. 

The GE_LER retrieval errors as function of different input parameters calculated using the validation dataset (i.e. the dataset 

not used for the NN training) are depicted in Figure 5. The differences between the true and retrieved GE_LER are very 

small with a mean and standard deviation of only 0.0016 ± 0.0018. These results demonstrate that the NN represents the 

inverse function in a very precise way. 10 

4.2. FP_ILM GE_LER Retrieval 

The neural network trained with the inverse function is applied to TROPOMI/S5P measurements. The inputs are the DOAS 

fitted polynomial coefficients and ozone slant column, the solar and viewing zenith angles, the relative azimuth angle, and 

the effective surface pressure 𝑍𝑒  computed as 

 𝑍𝑒 = (1 − 𝑓𝑐)𝑍𝑠 + 𝑓𝑐  𝑍𝑐 (5) 15 

where 𝑓𝑐  is the cloud fraction,  𝑍𝑠 the surface pressure, and 𝑍𝑐 the cloud pressure. The S5P cloud properties are obtained 

from the operational TROPOMI cloud products using the OCRA and ROCINN (Lutz et al., 2016; Loyola et al., 2018) 

algorithms. 

The TROPOMI/S5P GE_LER results for April 10
th

, 2018 are shown in Figure 6, as expected the GE_LER shows the same 

patterns as the clouds for that day. In the case of clear-sky (𝑓𝑐 ≤ 0.05) the GE_LER represents the surface albedo and for the 20 

cloudy cases (𝑓𝑐 ≥ 0.95) the GE_LER represents the cloud albedo. Figure 7 shows the histograms of the differences between 

the TROPOMI clear-sky GE_LER and OMI LER climatology (Kleipool et al., 2008) and the differences between the cloudy 

TROPOMI GE_LER and the cloud albedo from the operational cloud product retrieved with ROCINN_CRB (Loyola et al., 

2018). The second mode around 0.5 in the histogram for the snow/ice cases indicates snow conditions in TROPOMI data 

that are not well represented in the OMI LER climatology. 25 

The mean differences for the clear-sky and cloudy cases as function of the surface type are summarized in Figure 7, the 

relative larger offsets and spreads for the cloudy cases are mainly due to the different spectral regions covered by GE_LER 

for the total ozone fitting window in the UV (325–335 nm) and the cloud properties retrieved with ROCINN_CRB from the 

oxygen A-Band in the NIR (758–771 nm). 

4.3. G3_LER Daily Map 30 
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The TROPOMI G3_LER map for a given day is created by regridding (using a 0.1° x 0.1° resolution) and aggregating 

normalized LER from the couple of days. The FP_ILM LERs are obtained from the S5P GE_LER retrievals under clear-sky 

conditions. In this version of the TROPOMI G3_LER map we use the OCRA cloud fraction 𝑓𝑐 for identifying clear-sky 

measurements, more concretely, we use the measurements with 𝑓𝑐 ≤ 0.05. In the future we plan to additionally use the S5P 

aerosol product and the regridded VIIRS/SNPP (flying in constellation with S5P) for a more stringent cloud/aerosol 5 

screening. 

The ground pixels affected by sun glint as well as the pixels influenced by solar eclipse are removed using the corresponding 

flags available in the S5P total ozone product (Pedergnana et al., 2018). The remaining FP_ILM LERs from a given day 

replace the corresponding grid points of the G3_LER map from the previous day. 

The BRDF dependencies (𝜃) are calculated by fitting a polynomial to the TROPOMI LER data averaged as function of the 10 

viewing zenith angle. Three different surface types are considered: land, water and snow/ice. Figure 8 shows the BRDF 

dependencies calculated with TROPOMI/S5P data from January, April, July and October 2018. For the surface classification 

we use the Land/Water mask and the snow/ice flag available in the S5P total ozone product (Pedergnana et al., 2018). 

Figure 9 shows the TROPOMI/S5P G3_LER daily map corresponding to April 30
th

, 2018 and a comparison to the OMI LER 

climatology for the month of April. The OMI LER is based on 3 years of data (2004 to 2007) whereas the TROPOMI 15 

G3_LER contains data of only a few weeks. The main advantages of the TROPOMI G3_LER daily map compared to 

climatology are first that it represents the current surface conditions like snow/ice contamination, second it takes into account 

the BRDF effects and third it has a better spatial resolution (0.1°). 

4.4. Usage of TROPOMI/S5P G3_LER for the Total Ozone retrieval 

The near-real-time S5P total ozone product is based on an iterative DOAS/AMF algorithm (Loyola et al., 2019) and the 20 

current operational version (1.1.5) uses the OMI LER climatology (Kleipool et al., 2008). The median bias between near-

real-time total ozone from S5P and reference data from Brewer, Dobson, and SAOZ sites is of the order of +1% (Verhoelst 

et al., 2018; Garane et al., 2019). 

S5P near-real-time ozone agrees well with the Copernicus Atmosphere Monitoring Service (CAMS) analysis with the 

exception of some anomalies at high latitudes (Inness et al., 2019). Those anomalies are associated to the coarse resolution of 25 

the OMI LER climatology and most important, the differences between the climatological LER values and the actual surface 

conditions like snow/ice. 

We replace the OMI LER climatology with the TROPOMI G3_LER daily maps and the resulting total ozone field is 

significantly smother and with far less outliers. Figure 10 shows the TROPOMI/S5P surface albedo and total ozone retrievals 

from April 1
st
, 2018 around the Bering Strait which separates Russia and Alaska. The TROPOMI G3_LER daily map agrees 30 

very well with the surface types visible in the corresponding VIIRS/SNPP images (S5P flies only 3-5 minutes behind SNPP) 
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including the water surface along the coasts of the shores of the Chukchi Sea in Russia and the Sarichef Island in the north of 

Alaska and the Seward Peninsula in south of Alaska. These water surfaces along the coast as well as the water of the Bering 

Sea are not properly represented in the OMI LER climatology that shows snow/ice over these regions. Likewise, the OMI 

LER climatology erroneously shows no snow/ice in the Yukon–Koyukuk Census Area in Alaska. The coarse spatial 

resolution of the OMI LER climatology is clearly visible in the total ozone field and what is even worst the wrong snow/ice 5 

values in the OMI LER climatology induce large errors on the retrieved total ozone with differences between −10% and  

+15%. 

Moreover, the agreement of the S5P total ozone with the CAMS assimilation at high latitudes is significantly better, see 

Figure 11. The mean differences between total ozone from S5P and CAMS for the complete month of April 2018 are 

summarized in Table 3. The agreement with CAMS improves considerably in all latitudinal regions: the differences in the 10 

total ozone in the region [80°S-60°S] is reduced from −2.53 ± 2.46% using OMI LER to 0.78 ± 3.49% using TROPOMI 

G3_LER, in the region [60°S-50°N] is reduced from 0.25 ± 1.17% to 0.12 ± 1.21%, in the region [50°N-70°N] is reduced 

from 1.21 ± 2.46% to 0.01 ± 2.02% and finally in the region [70°N -90°N] is reduced from −1.004 ± 2.58% to −0.15 ±

2.64%. 

5. Conclusions 15 

We have developed a novel algorithm for the accurate and fast retrieval of geometry-dependent effective Lambertian 

equivalent reflectivity (GE_LER) from UVN sensors based on the full-physics inverse learning machine (FP_ILM) 

technique. The main inputs to the GE_LER retrieval are the DOAS fitting polynomial and fitted trace gas slant column as 

well as the satellite viewing geometry. The inversion problem is solved using neuronal networks trained with radiative 

transfer model simulations based on the same kind of RTM and settings used for the AMF calculations. 20 

A global gapless geometry-dependent LER (G3_LER) daily map can be easily created from the GE_LER retrievals under 

clear-sky conditions. Both GE_LER and G3_LER take into account the satellite viewing dependencies characterized by the 

bidirectional reflectance distribution function (BRDF) effects. 

GE_LER is retrieved from each single ground pixel using the same spectrum and DOAS/AMF settings as the trace gas 

retrieval and therefore it is fully consistent with the trace gas retrieval in contrast to LER products based on data from other 25 

satellites or LER data from the same satellite but using different fitting or RTM settings. G3_LER maps are updated on a 

daily basis using the GE_LER under clear-sky conditions from that day and therefore it is clearly superior to LER 

climatologies that fail to represent the actual surface conditions like snow/ice. 

We have applied the FP-ILM GE_LER/G3_LER to S5P and showed that the total ozone retrieval using this novel product is 

substantially superior to the one created using the OMI_LER climatology. The ozone fields are not only much more smooth, 30 

but also the differences compared to the total ozone from CAMS is reduced from −2.53 ± 2.46% to 0.78 ± 3.49% in the 
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latitudinal region [80°S-60°S]. Large errors on the S5P total ozone between −10% and  +15% induced by snow/ice miss-

representations in the OMI_LER climatology are removed using the FP-ILM GE_LER/G3_LER TROPOMI products. 

FP_ILM GE_LER can be applied to any trace gas, cloud and aerosol product retrieved in the UVN and is fully compatible 

with the DOAS/AMF settings used for the trace gas retrievals. GE_LER and G3_LER can be used for computing AMFs 

based on the effective scene approximation or the independent pixel approximation respectively. In this paper we 5 

demonstrated their effectiveness for improving the quality of the total ozone from TROPOMI; in the near future we will 

extend GE_LER/G3_LER to the fitting windows of the S5P operational UVN cloud product (Loyola et al., 2018) and 

UV/VIS trace gases NO2 (van Geffen et al., 2018), SO2 (Theys et al., 2017), HCHO (De Smedt et al., 2018) as well as S5P 

research product like CHOCHO and aerosol optical depth. 

The GE_LER retrieval is accurate and extremely fast and therefore well suited for the (near-real-time) processing of the huge 10 

amount of data of the atmospheric Sentinel satellite missions. We plan to apply the FP_ILM GE_LER/G3_LER retrieval to 

the future Copernicus Sentinel-5 mission that like Sentinle-5P will follow a sun-synchronous polar orbit. Furthermore, we 

plan to assess the suitability of FP_ILM GE_LER to capture the diurnal LER dependencies on the sun-satellite geometry of 

the future UVN geostationary missions Sentinel-4, TEMPO and GMES. 

 15 
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Table 1: Range of the input parameters used for radiance simulations in the total ozone fitting window; the ozone profiles are 

classified as function of the total column. Smart sampling is used to generate node points optimally covering all input dimensions 

and more than 𝟐 × 𝟏𝟎𝟓 synthetic UV spectra are generated.  

Parameter Minimun Maximum 

Ozone Profile 125 DU 575 DU 

Solar Zenith Angle 0° 90° 

Viewing Zenith Angle 0° 70° 

Relative Azimuth Angle 0° 180° 

Surface Albedo 0 1 

Surface Pressure 125 hPa 1013 hPa 
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Table 2: Summary of the comparison between TROPOMI GE_LER clear-sky and OMI LER as well as for TROPOMI GE_LER 

cloudy and ROCINN_CRB cloud albedo. There are more than 4.5 million clear-sky and more than 1.4 million cloudy cases out of 

the around 15 million S5P measurements from April 10th, 2018. 

 Number Mean Std. Dev. 

Clear-sky Land 866 907 0.0014 0.0624 

Clear-sky Water 1 837 686 -0.0144 0.0762 

Clear-sky Snow/Ice 1 852 222 -0.0048 0.2573 

Cloudy Land 254 645 0.0834 0.1865 

Cloudy Water 1 084 985 0.0487 0.1464 

Cloudy Snow/Ice 127 636 -0.0343 0.5432 

 

 5 
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Table 3: Latitudinal differences between total ozone from CAMS and S5P using TROPOMI G3_LER and OMI LER for the 

complete month of April 2018. The values represent the total number of measurements for each latitudinal range and the mean 

difference ± standard deviation in percentage. Latitude bands with less than 100000 data points/degree were skipped, due to the 

polar winter there are hardly any data south of 81°S. The number of measurements increases in the north because of the 

overlapping orbits. 5 

Latitude 

Range 
Number 

TROPOMI 

G3_LER 
OMI LER 

80°S-70°S 11297206 0.274±3.440 -2.041±2.114 

70°S-60°S 29018428 0.983±3.515 -2.727±2.300 

60°S-50°S 32351377 1.147±1.963 0.808±1.815 

50°S-40°S 31580917 0.060±1.264 0.048±1.224 

40°S-30°S 31154717 -0.373±0.962 -0.336±0.930 

30°S-20°S 30948143 -0.302±0.843 -0.252±0.807 

20°S-10°S 30814933 0.408±0.778 0.537±0.745 

10°S-0°S 30744238 0.316±0.806 0.517±0.720 

0°N-10°N 30732173 0.364±0.843 0.607±0.738 

10°N-20°N 30779225 -0.034±0.799 0.142±0.728 

20°N-30°N 30894360 -0.271±0.960 -0.097±0.901 

30°N-40°N 31091907 -0.204±1.375 0.173±1.336 

40°N-50°N 31469922 0.120±1.883 0.584±1.880 

50°N-60°N 32250750 0.150±1.720 1.287±1.920 

60°N-70°N 39590441 0.099±2.240 1.155±2.798 

70°N-80°N 56545121 -0.049±2.719 -0.730±2.701 

80°N-90°N 26178029 -0.353±2.446 -1.595±2.317 
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Figure 1: Data flow diagram of the FP_ILM training phase. The smart sampling techniques is used to create simulated state 

vector xs and geophysical conditions Ws that are used as input to a forward model for the creation of simulated spectra with 

their expected errors ys+ey.  Machine learning techniques are used for computing the inverse operator that is trained using as 5 

input the features extracted from the simulated spectra M(ys) and the geophysical conditions Ws as an output the state vector 

and the errors xs+ex. 
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Figure 2: Data flow diagram of the FP_ILM retrieval phase. The inverse operator computed during the FP_ILM training phase is 

used to solve the inverse problem and retrieve the state vector x taking as input the features M() extracted from the measured 10 
spectra y and the geophysical conditions W.  
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Figure 3: Data flow diagram of the creation of global gapless geometry-dependent LER (G3_LER) map for day d by merging the 

clear-sky LER data from the same day with the G3_LER map from the previous day. 5 
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(a) 

 

(b) 

 

(c) 

 

Figure 4: Optical densities difference as function of wavelength with respect to (a) surface albedo, (b) total ozone, and (c) viewing 

zenith angle. The doted-lines represent the DOAS fitted polynomial.  
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Figure 5: GE_LER retrieval error as function of (a) total ozone, (b) surface pressure, (c) solar zenith angle, (d) viewing zenith 

angle, and (e to h) the four DOAS polynomial fit coefficients. 
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(a) 

 

(b) 

 

Figure 6: (a) GE_LER in the total ozone fitting windows [325-335 nm] retrieved from TROPOMI/S5P data from April 10th, 2018 

and (b) the corresponding cloud fraction for this day. 
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Figure 7: Histograms of the differences (left) between clear-sky TROPOMI GE_LER and OMI LER climatology and (right) 5 
between the cloudy TROPOMI GE_LER and the ROCINN_CRB cloud albedo from the operational S5P cloud product. The 

comparisons are performed separately per surface types (land, water, and snow/ice) and using S5P data from April 10th, 2018. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8: BRDF dependencies (𝜽)  as function of the viewing zenith angle for land, water, and snow/ice calculated with 

TROPOMI/S5P data from (a) January, (b) April, (c) July, and (d) October 2018. The negative viewing zenith angles correspond to 

the first 225 detector pixels. The discontinuity at nadir is due to numerical issues in the radiative transfer model calculations with 

very small relative azimuth angles.  5 
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(a)  

 

(b)  

 

(c)  

 

Figure 9: (a) TROPOMI G3_LER daily map corresponding to April 30th, 2018, (c) OMI LER climatology for the month of April, 

and (b) the difference between these two datasets. There is a very good agreement over land and water surfaces, the mayor 

differences are due to snow/ice regions in the OMI LER climatology from 2004-2007 that do not match with the actual surface 

conditions in 2018. 
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Figure 10: TROPOMI/S5P (top) surface and (bottom) ozone measurements from April 1st, 2018 around the Bering Strait. The (a) 

TROPOMI/S5P G3_LER daily map agrees very well with the surface types observed in the (b) VIIRS/SNPP image including the 

water surface along the coasts of Russia and Alaska. These water surfaces along the coast as well as the water of the Bering Sea are 5 
not properly represented in the (c) OMI LER climatology that shows snow/ice over these regions. Likewise, the OMI LER 

climatology erroneously shows no snow/ice in Alaska. The total ozone using the (d) TROPOMI G3_LER daily map is significantly 

smoother than the corresponding one using the (f) OMI LER climatology. The coarse spatial resolution of the OMI LER 

climatology is clearly visible in the total ozone field and what is even worst the wrong snow/ice values in the OMI LER climatology 

induce large errors on the retrieved total ozone (e) with differences between −𝟏𝟎% and +𝟏𝟓%. 10 
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Figure 11: Comparison of total ozone from CAMS and the S5P retrieved ozone using the OMI LER climatology and the daily 

TROPOMI G3_LER maps for April 2018. The total ozone based on daily G3_LER maps is significantly closer to CAMS especially 

for the high latitude regions. 10 
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